
Brain Network Decomposition for Naturalistic Stimulus Paradigm 
 

Yijun Liu1, Jian Li2,3,4, Jessica L. Wisnowski5,6, Anand A. Joshi1, Richard M. Leahy1 

 
1 Signal and Image Processing Institute, University of Southern California, Los Angeles, CA 
2 A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 
3 Department of Radiology, Harvard Medical School, Boston, MA 
4 Department of Neurology, Massachusetts General Hospital, Boston, MA 
5 Radiology and Pediatrics, Division of Neonatology, Children’s Hospital Los Angeles, Los Angeles, CA 
6 Keck School of Medicine, University of Southern California, Los Angeles, CA 
 
Introduction 
Functional MRI acquired using naturalistic stimulus paradigms, such as movie-watching, 

incorporates dynamic and diverse sensory information. It has been shown to be more ecologically 

valid than traditional task-based fMRI and produce brain responses with higher stability than 

resting-state fMRI1. Existing tools for analyzing this type of fMRI data often assume perfect 

temporal synchronization between subjects, which, however, may not be valid due to differing 

responses and/or latency to stimuli across different subjects. Popular methods such as intersubject 

correlation yield limited information about brain response patterns. Although the commonly used 

independent component analysis5 can discover interesting structure, it imposes independence 

constraint on either the spatial or temporal domain, which may not be physiologically realistic. To 

address these issues, we applied a combination of a temporal synchronization technique 

(BrainSync Alignment2,3) and a tensor decomposition method (NASCAR4) to movie-watching 

data. The results showed that our method can provide rich information about the population’s 

common brain responses to the naturalistic stimuli, yet with a parsimonious model. 

 

Methods and Materials 

The minimally preprocessed 7T movie-watching fMRI data of 110 subjects from the Human 

Connectome Project were used7,8. Continuous fMRI data were acquired during 4 sessions while 

subjects watched different audio-visual movies interleaved with rest periods. Each session ran 

~15min (TR=1s). The fMRI data were resampled onto the cortical surface and co-registered to a 

common surface atlas. Each scan was represented as a V×T matrix (V≈22K is the number of vertices 

across the two hemispheres, T≈900 is the number of time points). For each movie, we applied 

BrainSync Alignment (BSA) to jointly synchronize fMRI data across all subjects, Fig. 1a. For Movie 

1, we formulated a tensor χ of size V×T×S by concatenating the synchronized fMRI data along the 



3rd dimension. NASCAR was then applied to approximate χ as a sum of 20 rank-1 tensors each 

representing a distinct brain network that is composed of a spatial activation map, a temporal 

dynamics component, and a subject participation level. We also extracted 20 components using the 

spatial ICA7 (sICA) for comparison. We used the temporal mode of the auditory network (Fig 1b) 

from Movie 1 to predict soundtrack loudness of other movies by transferring the auditory temporal 

response from the group atlas G1 to each subjects’ space in other sessions through a cascaded 

(invertible) BSA (Fig. 1a). The individual subjects’ responses were then averaged together as the 

final prediction. Loudness measures, used as ground truths, were extracted using MIRtoolbox9 and 

convolved with a double gamma HRF. For sICA, we applied a pairwise BrainSync between two 

sessions of each subject to predict the responses, which were also averaged across all subjects. 
 

Results 

Fig. 1b shows the spatial maps of two networks identified using BSA+NASCAR and sICA. Both 

methods capture activations in the auditory and visual cortex. Since the latter enforces spatial 

independences, spatial overlaps between the networks can be underestimated as shown in Fig. 1b. 

Fig 1c quantitatively confirms this observation by comparing the inter-network cross-correlation 

matrices between the two methods. Fig 2a shows the normalized sum of squared reconstruction 

error as a function of the number of identified networks. The errors are consistently lower using 

our method than that with sICA. Predictions of the loudness using the auditory temporal dynamics 

from BSA+NASCAR are also better correlated with loudness measures, for all 3 movies (Fig. 2b, 

c). 

 

Conclusions 

Our framework decomposes naturalistic fMRI data into brain networks under more physiologically 

valid assumptions, resulting in better stimulus neural encoding-decoding and better fit to the data 

than ICA.  
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