CORTICAL PARCELLATION WITH GRAPH REPRESENTATION LEARNING ON RESTING-STATE FMRI

Yijun Liu¹, Jian (Andrew) Li², Jessica Wisnowski^{3,4}, Richard Leahy¹

 ¹ Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California
² A. A. Martinos Center for Biomedical Imaging & Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School
³ Radiology and Pediatrics, Division of Neonatology, Children's Hospital Los Angeles
⁴ Keck School of Medicine, University of Southern California

Overall goal

Construct a novel cortical parcellation from resting-state fMRI utilizing stateof-the-art graph representation learning.

- Existing parcellations are with fixed number of parcels.
- We provide a flexible way to parcellate the cortex with an arbitrary number provided by the user.

Cortical parcellation from resting-state fMRI

Partitioning cerebral cortex (B) into disjoint sets

 $B = B_1 \cup B_2 \dots \cup B_n$ $B_i \cap B_j = \emptyset, \ i \neq j$

Resting-state functional connectivity (RSFC)

- This representation shows an adjacency matrix of a graph, which measures the synchrony of the brain responses between all pairs of cortical vertices.
- Cortical parcellation can be derived from clustering vertices in this graph.

Vertex-wise RSFC

Graph representation learning helps clustering

Recent development in graph representation learning

- Random-walk based: DeepWalk (KDD, 2014), Node2vec (KDD, 2016)
- Closed-form: NetMF (WSDM, 2018) [*]

Original data

NetMF representation [*] K-means on NetMF representation

[*] Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., & Tang, J. (2018). Network embedding as matrix factorization: Unifying deepwalk, line, pte, and node2vec. In Proceedings of the eleventh ACM international conference on web search and data mining (pp. 459-467).

From overlapping brain activation maps to non-overlapping partitions

Spatial activation maps from a tensor decomposition method (NASCAR) [*]

- No orthogonal / independent constraints like PCA / ICA
- It generates a feature vector for every surface vertex based on the activation in these spatial maps

Method

[*] Li, J., Liu, Y., Wisnowski, J. L., & Leahy, R. M. (2023). Identification of overlapping and interacting networks reveals intrinsic spatiotemporal organization of the human brain. *NeuroImage*, 270, 119944.

100 clusters

400 clusters

but how do we know these are useful/correct?

Parcellation overlaid on story task activation map

[*] Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X. N., Holmes, A. J., ... & Yeo, B. T. (2018). Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cerebral cortex, 28(9), 3095-3114.

Quantitative metric for evaluating alignment with activation map

 σ_i^2 : variance of activation values within parcel *i*

[*] Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X. N., Holmes, A. J., ... & Yeo, B. T. (2018). Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. *Cerebral cortex*, 28(9), 3095-3114.

Quantitative metric for evaluating alignment with activation map

 σ_i^2 : variance of activation values within parcel *i*

Weighted average variance across all parcels $\sigma^2 = \sum_{i=1}^N \sigma_i^2 \frac{|V^i|}{|V|}$

- *N*: number of parcels
- $|V^i|$: number of vertices within parcel *i*
- |*V*|: number of vertices over the whole cortex

[*] Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X. N., Holmes, A. J., ... & Yeo, B. T. (2018). Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cerebral cortex, 28(9), 3095-3114.

Difference of weighted average variance between our parcellation and baselines

Acknowledgement

This project is supported by NIH R01NS074980

FOR MORE DETAILS, PLEASE STAY TUNED FOR OUR FULL PAPER

THANKS!