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Construct a novel cortical parcellation from resting-state fMRI utilizing state-

of-the-art graph representation learning. 

• Existing parcellations are with fixed number of parcels.

• We provide a flexible way to parcellate the cortex with an arbitrary number 

provided by the user.
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Overall goal
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Resting-state functional connectivity (RSFC)
● This representation shows an adjacency matrix of a graph,

which measures the synchrony of the brain responses
between all pairs of cortical vertices.

● Cortical parcellation can be derived from clustering vertices
in this graph.

Partitioning cerebral cortex (𝐵) into disjoint sets
𝐵 = 𝐵! ∪ 𝐵"…∪ 𝐵#
𝐵$ ∩ 𝐵% = ∅, 𝑖 ≠ 𝑗

Vertex-wise RSFC

Vertex 
index

Vertex index

Cortical parcellation from resting-state fMRI



Recent development in graph representation learning

• Random-walk based: DeepWalk (KDD, 2014), Node2vec (KDD, 2016)

• Closed-form: NetMF (WSDM, 2018) [*]
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[*] Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., & Tang, J. (2018). Network embedding as matrix factorization: Unifying deepwalk, line, pte, and node2vec. 
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NetMF representation [*] K-means on NetMF representationOriginal data

Graph  representation learning helps clustering



Spatial activation maps from a tensor decomposition method (NASCAR) [*]

• No orthogonal / independent constraints like PCA / ICA

• It generates a feature vector for every surface vertex based on the activation in these spatial maps
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From overlapping brain activation maps 

to non-overlapping partitions
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Method
NASCAR spatial maps [*]
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100 clusters 200 clusters

400 clusters

but how do we know these are useful/correct?



Ours Schaefer [*]
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Parcellation overlaid on story task activation map
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Quantitative metric for evaluating alignment 

with activation map

𝜎$": variance of activation values within parcel 𝑖

Ours Schaefer [*]
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Quantitative metric for evaluating alignment 

with activation map

𝜎$": variance of activation values within parcel 𝑖

Weighted	average	variance	across	all	parcels		𝜎" = ∑$&!' 𝜎$"
|𝑽!|
|𝑽|

- N:	number	of	parcels
- |𝑽$|:	number	of	vertices	within parcel 𝑖
- 𝑽 : number	of	vertices	over	the	whole	cortex

Ours Schaefer [*]
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Difference of weighted average variance between 

our parcellation and baselines
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